Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.304
Filtrar
1.
J Mol Recognit ; 37(3): e3083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514991

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are pentose phosphate pathway enzymes. Compounds with a heterocyclic pyrrole ring system containing this atom can be derivatized with various functional groups into highly effective bioactive agents. In this study, pyrrole derivatives on these enzyme's activity were investigated. The IC50 values of different concentrations of pyrrole derivatives for G6PD were found in the range of 0.022-0.221 mM Ki values 0.021 ± 0.003-0.177 ± 0.021 and for 6PGD IC50 values 0.020-0.147, mM Ki values 0.013 ± 0.002-0.113 ± 0.030 mM. The 2-acetyl-1-methylpyrrole (1g) showed the best inhibition value for G6PD and 6PGD enzymes. In addition, in silico molecular docking experiments were performed to elucidate how these pyrrole derivatives (1a-g) interact with the binding sites of the target enzymes. The study's findings on pyrrole derivatives could be used to create innovative therapeutics that could be a treatment for many diseases, especially cancer manifestations.


Asunto(s)
Vía de Pentosa Fosfato , Fosfogluconato Deshidrogenasa , Simulación del Acoplamiento Molecular , Fosfogluconato Deshidrogenasa/química , Fosfogluconato Deshidrogenasa/metabolismo , Sitios de Unión , Pirroles/farmacología
2.
J Biomol Struct Dyn ; 42(4): 2058-2074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37599457

RESUMEN

The malarial parasite Plasmodium falciparum predominantly causes severe malaria and deaths worldwide. Moreover, resistance developed by P. falciparum to frontline drugs in recent years has markedly increased malaria-related deaths in South Asian Countries. Ribulose 5-phosphate and NADPH synthesized by Pentose Phosphate Pathway (PPP) act as a direct precursor for nucleotide synthesis and P. falciparum survival during oxidative challenges in the intra-erythrocytic growth phase . In the present study, we have elucidated the structure and functional characteristics of 6-phosphogluconate dehydrogenase (6PGD) in P. falciparum and have identified potent hits against 6PGD by pharmacophore-based virtual screening with ZINC and ChemBridge databases. Molecular docking and Molecular dynamics simulation, binding free energies (MMGBSA & MMPBSA), and Density Functional Theory (DFT) calculations were integratively employed to validate and prioritize the most potential hits. The 6PGD structure was found to have an open and closed conformation during MD simulation. The apo form of 6PGD was found to be in closed conformation, while a open conformation attributed to facilitating binding of cofactor. It was also inferred from the conformational analysis that the small domain of 6PGD has a high influence in altering the conformation that may aid in open/closed conformation of 6PGD. The top three hits identified using pharmacophore hypotheses were ChemBridge_11084819, ChemBridge_80178394, and ChemBridge_17912340. Though all three hits scored a high glide score, MMGBSA, and favorable ADMET properties, ChemBridge_11084819 and ChemBrdige_17912340 showed higher stability and binding free energy. Moreover, these hits also featured stable H-bond interactions with the active loop of 6PGD with binding free energy comparable to substrate-bound complex. Therefore, the ChemBridge_11084819 and ChemBridge_17912340 moieties demonstrate to have high therapeutic potential against 6PGD in P. falciparum.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Malaria , Plasmodium falciparum , Humanos , Simulación del Acoplamiento Molecular , Plasmodium falciparum/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Conformación Molecular
3.
Arch Pharm (Weinheim) ; 357(1): e2300326, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933686

RESUMEN

The primary strategy in the fight against cancer is to screen compounds that may be effective on different types of cancer. Compounds from plants seem to be a good source. The present study investigated the inhibitory effects of some flavonoids on the 6-phosphogluconate dehydrogenase (6-PGD) enzyme. We determined that quercetin, myricetin, fisetin, morin, apigenin, and baicalein exhibited powerful inhibition effects with IC50 values between 4.08 and 21.26 µM, while luteolin, kaempferol, apiin, galangin, and baicalin showed moderate effects with IC50 values between 54.15 and 138.91 µM. Quercetin competitively inhibited the binding of NADP and 6-phosphogluconate to the 6-PGD enzyme with Ki values of 0.527 ± 0.251 and 0.374 ± 0.138 µM, respectively. We calculated Ki values using the Cheng-Prusoff equation as between 0.44 and 14.88 µM. The possible interaction details of polyphenols with the active site of 6-PGD were analyzed with docking software. In silico and in vitro studies indicated that the -OH groups on the A and C ring of flavonoids bind to the enzyme's active site via hydrogen bonding, while the -OH groups on the C ring contributed significantly to the increase in the inhibitory potentials of the molecules. Molecular dynamic simulations tested the stability of the 6-PGD-quercetin complex during 100 ns. These phytochemicals were suitable for drug use when optimized with absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The effects of the studied compounds on cancer cell lines of potential targets were demonstrated by network analysis. In conclusion, this study suggests that flavonoids found to be potent inhibitors could serve as leading candidates to treat many cancers via 6-PGD inhibition.


Asunto(s)
Fosfogluconato Deshidrogenasa , Quercetina , Quercetina/farmacología , Fosfogluconato Deshidrogenasa/metabolismo , Relación Estructura-Actividad , Flavonoides/farmacología , Flavonoides/química , Polifenoles
4.
Technol Cancer Res Treat ; 22: 15330338231190737, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559469

RESUMEN

At present, chemotherapy is the most effective strategy for treating triple-negative breast cancer (TNBC), but its efficacy was limited by the development of chemo-resistance. The exact mechanism of chemoresistance still remains unclear. This study aims to examine whether 6-phosphogluconate dehydrogenase (6PGD), a key enzyme in the oxidative pentose phosphate pathway (PPP), could promote the resistance of TNBC cells to epirubicin. A TNBC epirubicin-resistant cell line was developed by increasing concentration and the effectiveness was tested. The expression and knockdown efficiency of 6PGD were further validated by performing quantitative real-time PCR (qPCR) and Western blot. The effects of 6PGD on parental and drug-resistant TNBC cell lines were verified based on proliferation and apoptosis experiments. Finally, nicotinamide adenine dinucleotide phosphate (NADPH) and lactate quantitative experiments were performed to examine the mechanism of 6PGD in promoting drug resistance. Epirubicin-resistant cancer cells exhibited a higher level of 6PGD in contrast to epirubicin-sensitive cells. In addition, 6PGD inhibited by genetic and pharmacological approaches significantly suppressed the growth and survival of both epirubicin-sensitive and epirubicin-resisteant TNBC cells. It should be noted that 6PGD inhibition sensitized epirubicin-resistant TNBC cells to epirubicin treatment. Moreover, it was also found that the levels of NADPH and lactate increased in epirubicin-resistant TNBC cells but decreased in response to 6PGD inhibition. The present results indicated that 6PGD inhibition disrupted metabolic reprogramming in epirubicin-resistant TNBC cells. Our work demonstrated that 6PGD inhibition reversed the resistance of TNBC cells to epirubicin, providing an alternative therapeutic choice to tackle the challenge of epirubicin resistance in TNBC treatment.


Asunto(s)
Fosfogluconato Deshidrogenasa , Neoplasias de la Mama Triple Negativas , Humanos , Epirrubicina/farmacología , Línea Celular Tumoral , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , NADP/metabolismo , NADP/farmacología , Lactatos/farmacología , Proliferación Celular
5.
J Microbiol Biotechnol ; 33(10): 1361-1369, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37417004

RESUMEN

Corynebacterium glutamicum (C. glutamicum) has been considered a very important and meaningful industrial microorganism for the production of amino acids worldwide. To produce amino acids, cells require nicotinamide adenine dinucleotide phosphate (NADPH), which is a biological reducing agent. The pentose phosphate pathway (PPP) can supply NADPH in cells via the 6-phosphogluconate dehydrogenase (6PGD) enzyme, which is an oxidoreductase that converts 6-phosphogluconate (6PG) to ribulose 5-phosphate (Ru5P), to produce NADPH. In this study, we identified the crystal structure of 6PGD_apo and 6PGD_NADP from C. glutamicum ATCC 13032 (Cg6PGD) and reported our biological research based on this structure. We identified the substrate binding site and co-factor binding site of Cg6PGD, which are crucial for understanding this enzyme. Based on the findings of our research, Cg6PGD is expected to be used as a NADPH resource in the food industry and as a drug target in the pharmaceutical industry.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/metabolismo , NADP/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Vía de Pentosa Fosfato , Aminoácidos/metabolismo
6.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239962

RESUMEN

As unicellular parasites are highly dependent on NADPH as a source for reducing equivalents, the main NADPH-producing enzymes glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) of the pentose phosphate pathway are considered promising antitrypanosomatid drug targets. Here we present the biochemical characterization and crystal structure of Leishmania donovani 6PGD (Ld6PGD) in complex with NADP(H). Most interestingly, a previously unknown conformation of NADPH is visible in this structure. In addition, we identified auranofin and other gold(I)-containing compounds as efficient Ld6PGD inhibitors, although it has so far been assumed that trypanothione reductase is the sole target of auranofin in Kinetoplastida. Interestingly, 6PGD from Plasmodium falciparum is also inhibited at lower micromolar concentrations, whereas human 6PGD is not. Mode-of-inhibition studies indicate that auranofin competes with 6PG for its binding site followed by a rapid irreversible inhibition. By analogy with other enzymes, this suggests that the gold moiety is responsible for the observed inhibition. Taken together, we identified gold(I)-containing compounds as an interesting class of inhibitors against 6PGDs from Leishmania and possibly from other protozoan parasites. Together with the three-dimensional crystal structure, this provides a valid basis for further drug discovery approaches.


Asunto(s)
Leishmania donovani , Leishmaniasis , Humanos , Leishmania donovani/metabolismo , Oro/farmacología , Auranofina/farmacología , Fosfogluconato Deshidrogenasa/química , Fosfogluconato Deshidrogenasa/metabolismo , NADP/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo
7.
Clin Transl Med ; 13(5): e1272, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37243374

RESUMEN

BACKGROUND: The pentose phosphate pathway (PPP) is an important mechanism by which tumour cells resist stressful environments and maintain malignant proliferation. However, the mechanism by which the PPP regulates these processes in colorectal cancer (CRC) remains elusive. METHODS: Closely related PPP genes were obtained from the TCGA and GEO databases. The effect of ATP13A2 on CRC cell proliferation was evaluated by performing in vitro assays. The connection between the PPP and ATP13A2 was explored by assessing proliferation and antioxidative stress. The molecular mechanism by which ATP13A2 regulates the PPP was investigated using chromatin immunoprecipitation and dual luciferase experiments. The clinical therapeutic potential of ATP13A2 was explored using patient-derived xenograft (PDX), patient-derived organoid (PDO) and AOM/DSS models. FINDINGS: We identified ATP13A2 as a novel PPP-related gene. ATP13A2 deficiency inhibited CRC growth and PPP activity, as manifested by a decrease in the levels of PPP products and an increase in reactive oxygen species levels, whereas ATP13A2 overexpression induced the opposite effect. Mechanistically, ATP13A2 regulated the PPP mainly by affecting phosphogluconate dehydrogenase (PGD) mRNA expression. Subsequent studies showed that ATP13A2 overexpression promoted TFEB nuclear localization by inhibiting the phosphorylation of TFEB, thereby enhancing the transcription of PGD and ultimately affecting the activity of the PPP. Finally, ATP13A2 knockdown inhibited CRC growth in PDO and PDX models. ATP13A2- /- mice had a lower CRC growth capacity than ATP13A2+/+ in the AOM/DSS model.Our findings revealed that ATP13A2 overexpression-driven dephosphorylation of TFEB promotes PPP activation by increasing PGD transcription, suggesting that ATP13A2 may serve as a potential target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Diagnóstico Preimplantación , Embarazo , Femenino , Ratones , Humanos , Animales , Fosfogluconato Deshidrogenasa/metabolismo , Vía de Pentosa Fosfato/genética , Estrés Oxidativo , Neoplasias Colorrectales/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , ATPasas de Translocación de Protón/metabolismo
8.
Mol Cancer Res ; 21(8): 825-835, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37071129

RESUMEN

Cancer cells frequently alter their metabolism to support biogenesis and proliferation and survive specific metabolic stressors. The glucose-associated pentose phosphate pathway (PPP) is crucial for cancer cell proliferation. In particular, 6-phosphogluconate dehydrogenase (6PGD), the second dehydrogenase in the PPP, catalyzes the decarboxylation of 6-phosphogluconate into ribulose 5-phosphate (Ru5P). However, the mechanisms controlling 6PGD expression in cancer cells remain unclear. Herein, we show that TAp73 increases Ru5P and NADPH production through 6PGD activation to counteract reactive oxygen species and protects cells from apoptosis. Moreover, 6PGD overexpression rescues the proliferation and tumorigenic ability of TAp73-deficient cells. These findings further establish the critical role of TAp73 on glucose metabolism regulation, demonstrating that TAp73 can activate 6PGD expression to support oncogenic cell growth. IMPLICATIONS: By transcriptional upregulation of 6PGD, TAp73 promotes the generation of Ru5P and NADPH, and enhances tumor cell proliferation.


Asunto(s)
Neoplasias , Fosfogluconato Deshidrogenasa , Humanos , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , NADP/metabolismo , Neoplasias/patología , Proliferación Celular , Especies Reactivas de Oxígeno/metabolismo , Vía de Pentosa Fosfato
9.
J Mol Recognit ; 35(12): e2987, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36326002

RESUMEN

Inhibition studies of enzymes in the pentose phosphate pathway (PPP) have recently emerged as a promising technique for pharmacological intervention in several illnesses. Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are the most important enzymes of the PPP. For this purpose, in the current study, we examined the effect of some fluorophenylthiourea on G6PD and 6PGD enzyme activity. These compounds exhibited moderate inhibitory activity against G6PD and 6PGD with KI values ranging from 21.60 ± 8.42 to 39.70 ± 11.26 µM, and 15.82 ± 1.54 to 29.97 ± 5.72 µM, respectively. 2,6-difluorophenylthiourea displayed the most potent inhibitory effect for G6PD, and 2-fluorophenylthiourea demonstrated the most substantial inhibitory effect for 6PGD. Furthermore, the molecular docking analyses of the fluorophenylthioureas, competitive inhibitors, were performed to understand the binding interactions at the enzymes' binding site.


Asunto(s)
Glucosa , Fosfogluconato Deshidrogenasa , Fosfogluconato Deshidrogenasa/metabolismo , Simulación del Acoplamiento Molecular , Glucosa/metabolismo , Fosfatos
10.
Chem Commun (Camb) ; 58(64): 9030-9033, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876000

RESUMEN

Whether or not the anticancer activity of gambogic acid is achieved via regulating the cellular metabolic process remains unclear. Here we report that gambogic acid suppresses the pentose phosphate pathway (PPP) by covalently inhibiting the 6-phosphogluconate dehydrogenase (6PGD) protein. This study elucidates the mechanism of action of gambogic acid from the perspective of metabolic reprogramming regulation in cancer cells.


Asunto(s)
Neoplasias , Xantonas , Neoplasias/metabolismo , Vía de Pentosa Fosfato , Fosfogluconato Deshidrogenasa/metabolismo , Xantonas/farmacología
11.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 3): 96-112, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234135

RESUMEN

6-Phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) catalyses the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate in the context of the oxidative part of the pentose phosphate pathway. Depending on the species, it can be a homodimer or a homotetramer. Oligomerization plays a functional role not only because the active site is at the interface between subunits but also due to the interlocking tail-modulating activity, similar to that of isocitrate dehydrogenase and malic enzyme, which catalyse a similar type of reaction. Since the pioneering crystal structure of sheep liver 6PGDH, which allowed motifs common to the ß-hydroxyacid dehydrogenase superfamily to be recognized, several other 6PGDH crystal structures have been solved, including those of ternary complexes. These showed that more than one conformation exists, as had been suggested for many years from enzyme studies in solution. It is inferred that an asymmetrical conformation with a rearrangement of one of the two subunits underlies the homotropic cooperativity. There has been particular interest in the presence or absence of sulfate during crystallization. This might be related to the fact that this ion, which is a competitive inhibitor that binds in the active site, can induce the same 6PGDH configuration as in the complexes with physiological ligands. Mutagenesis, inhibitors, kinetic and binding studies, post-translational modifications and research on the enzyme in cancer cells have been complementary to the crystallographic studies. Computational modelling and new structural studies will probably help to refine the understanding of the functioning of this enzyme, which represents a promising therapeutic target in immunity, cancer and infective diseases. 6PGDH also has applied-science potential as a biosensor or a biobattery. To this end, the enzyme has been efficiently immobilized on specific polymers and nanoparticles. This review spans the 6PGDH literature and all of the 6PGDH crystal structure data files held by the Protein Data Bank.


Asunto(s)
Fosfogluconato Deshidrogenasa , Animales , Dominio Catalítico , Cristalografía por Rayos X , Cinética , NADP/metabolismo , Fosfogluconato Deshidrogenasa/química , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Ovinos
12.
Biotechnol Appl Biochem ; 69(1): 281-288, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33438819

RESUMEN

Oxidative stress is to upregulate the pentose phosphate pathway (PPP). The PPP consists of two functional branches, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconaste dehydrogenase (6PGD). Glutathione reductase (GR) has a significant role in catalyzing an oxidized glutathione form into a reduced form. The purpose of this study is to investigate the effects of brimonidine and proparacaine on the activity of 6PGD, G6PD, and GR enzymes purified from human erythrocytes. Brimonidine displayed considerable inhibition profile against G6PD with IC50 value and KI constant of 29.93 ± 3.56 and 48.46 ± 0.66 µM, respectively. On the other hand, proparacaine had no inhibitory effect against G6PD. KI values were found to be 66.06 ± 0.78 and 811.50 ± 11.13 µM for brimonidine and proparacaine, respectively, for 6PGD. KI values were found to be 144.10 ± 2.01 and 1,654.00 ± 26.29 µM for brimonidine and proparacaine, respectively, for GR. Herein, also in silico molecular docking studies were performed between drugs and enzymes.


Asunto(s)
Glucosafosfato Deshidrogenasa , Fosfogluconato Deshidrogenasa , Tartrato de Brimonidina/farmacología , Glucosa-6-Fosfato , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión , Glutatión Reductasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Vía de Pentosa Fosfato , Fosfogluconato Deshidrogenasa/metabolismo , Propoxicaína
13.
Elife ; 102021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34709178

RESUMEN

Cellular metabolism has key roles in T cells differentiation and function. CD4+ T helper-1 (Th1), Th2, and Th17 subsets are highly glycolytic while regulatory T cells (Tregs) use glucose during expansion but rely on fatty acid oxidation for function. Upon uptake, glucose can enter pentose phosphate pathway (PPP) or be used in glycolysis. Here, we showed that blocking 6-phosphogluconate dehydrogenase (6PGD) in the oxidative PPP resulted in substantial reduction of Tregs suppressive function and shifts toward Th1, Th2, and Th17 phenotypes which led to the development of fetal inflammatory disorder in mice model. These in turn improved anti-tumor responses and worsened the outcomes of colitis model. Metabolically, 6PGD blocked Tregs showed improved glycolysis and enhanced non-oxidative PPP to support nucleotide biosynthesis. These results uncover critical role of 6PGD in modulating Tregs plasticity and function, which qualifies it as a novel metabolic checkpoint for immunotherapy applications.


Asunto(s)
Vía de Pentosa Fosfato , Fosfogluconato Deshidrogenasa/genética , Linfocitos T Reguladores/fisiología , Animales , Ratones , Fosfogluconato Deshidrogenasa/metabolismo
14.
Biosci Biotechnol Biochem ; 85(9): 2084-2088, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34169967

RESUMEN

We showed that the isobutanol sensitivity in glucose-6-phosphate dehydrogenase-deficient cells of the yeast Saccharomyces cerevisiae was rescued by an alternative NADPH producer, acetaldehyde dehydrogenase, but not in the cells lacking 6-phosphogluconate dehydrogenase. This phenotype correlated with the intracellular NADPH/NADP+ ratio in yeast strains. Our findings indicate the importance of NADPH for the isobutanol tolerance of yeast cells.


Asunto(s)
Butanoles/metabolismo , NADP/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetaldehído/metabolismo , Aldehído Oxidorreductasas/metabolismo , Medios de Cultivo , Fermentación , Glucosa-6-Fosfato/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/enzimología
15.
Mol Biochem Parasitol ; 244: 111383, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34048823

RESUMEN

Giardia lamblia, due to the habitat in which it develops, requires a continuous supply of intermediate compounds that allow it to survive in the host. The pentose phosphate pathway (PPP) provides essential molecules such as NADPH and ribulose-5-phosphate during the oxidative phase of the pathway. One of the key enzymes during this stage is 6-phosphogluconate dehydrogenase (6 PGDH) for generating NADPH. Given the relevance of the enzyme, in the present work, the 6pgdh gene from G. lamblia was amplified and cloned to produce the recombinant protein (Gl-6 PGDH) and characterize it functionally and structurally after the purification of Gl-6 PGDH by affinity chromatography. The results of the characterization showed that the protein has a molecular mass of 54 kDa, with an optimal pH of 7.0 and a temperature of 36-42 °C. The kinetic parameters of Gl-6 PGDH were Km = 49.2 and 139.9 µM (for NADP+ and 6-PG, respectively), Vmax =26.27 µmol*min-1*mg-1, and Kcat = 24.0 s-1. Finally, computational modeling studies were performed to obtain a structural visualization of the Gl-6 PGDH protein. The generation of the model and the characterization assays will allow us to expand our knowledge for future studies of the function of the protein in the metabolism of the parasite.


Asunto(s)
Giardia lamblia/enzimología , Gluconatos/química , NADP/química , Fosfogluconato Deshidrogenasa/química , Proteínas Protozoarias/química , Ribulosafosfatos/química , Secuencias de Aminoácidos , Sitios de Unión , Clonación Molecular/métodos , Expresión Génica , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/enzimología , Giardia lamblia/genética , Gluconatos/metabolismo , Humanos , Cinética , Modelos Moleculares , NADP/metabolismo , Vía de Pentosa Fosfato/genética , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribulosafosfatos/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica
16.
Cell Rep ; 34(10): 108831, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691103

RESUMEN

Although T cell expansion depends on glycolysis, T effector cell differentiation requires signaling via the production of reactive oxygen species (ROS). Because the pentose phosphate pathway (PPP) regulates ROS by generating nicotinamide adenine dinucleotide phosphate (NADPH), we examined how PPP blockade affects T cell differentiation and function. Here, we show that genetic ablation or pharmacologic inhibition of the PPP enzyme 6-phosphogluconate dehydrogenase (6PGD) in the oxidative PPP results in the generation of superior CD8+ T effector cells. These cells have gene signatures and immunogenic markers of effector phenotype and show potent anti-tumor functions both in vitro and in vivo. In these cells, metabolic reprogramming occurs along with increased mitochondrial ROS and activated antioxidation machinery to balance ROS production against oxidative damage. Our findings reveal a role of 6PGD as a checkpoint for T cell effector differentiation/survival and evidence for 6PGD as an attractive metabolic target to improve tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Fosfogluconato Deshidrogenasa/metabolismo , 6-Aminonicotinamida/química , 6-Aminonicotinamida/farmacología , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Granzimas/genética , Granzimas/metabolismo , Humanos , Inmunoterapia , Listeria monocytogenes/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/fisiología , Fosfogluconato Deshidrogenasa/antagonistas & inhibidores , Fosfogluconato Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Trasplante Heterólogo
17.
J Am Chem Soc ; 143(7): 2694-2698, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33560827

RESUMEN

The activation barriers ΔG⧧ for kcat/Km for the reactions of whole substrates catalyzed by 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, and glucose 6-phosphate isomerase are reduced by 11-13 kcal/mol by interactions between the protein and the substrate phosphodianion. Between 4 and 6 kcal/mol of this dianion binding energy is expressed at the transition state for phosphite dianion activation of the respective enzyme-catalyzed reactions of truncated substrates d-xylonate or d-xylose. These and earlier results from studies on ß-phosphoglucomutase, triosephosphate isomerase, and glycerol 3-phosphate dehydrogenase define a cluster of six enzymes that catalyze reactions in glycolysis or of glycolytic intermediates, and which utilize substrate dianion binding energy for enzyme activation. Dianion-driven conformational changes, which convert flexible open proteins to tight protein cages for the phosphorylated substrate, have been thoroughly documented for five of these six enzymes. The clustering of metabolic enzymes which couple phosphodianion-driven conformational changes to enzyme activation suggests that this catalytic motif has been widely propagated in the proteome.


Asunto(s)
Glucosa-6-Fosfato Isomerasa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Biocatálisis , Activación Enzimática , Cinética , Fosfitos/química , Fosfitos/metabolismo , Especificidad por Sustrato , Termodinámica , Xilosa/metabolismo
18.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33497360

RESUMEN

Dysmorphic pulmonary vascular growth and abnormal endothelial cell (EC) proliferation are paradoxically observed in premature infants with bronchopulmonary dysplasia (BPD), despite vascular pruning. The pentose phosphate pathway (PPP), a metabolic pathway parallel to glycolysis, generates NADPH as a reducing equivalent and ribose 5-phosphate for nucleotide synthesis. It is unknown whether hyperoxia, a known mediator of BPD in rodent models, alters glycolysis and the PPP in lung ECs. We hypothesized that hyperoxia increases glycolysis and the PPP, resulting in abnormal EC proliferation and dysmorphic angiogenesis in neonatal mice. To test this hypothesis, lung ECs and newborn mice were exposed to hyperoxia and allowed to recover in air. Hyperoxia increased glycolysis and the PPP. Increased PPP, but not glycolysis, caused hyperoxia-induced abnormal EC proliferation. Blocking the PPP reduced hyperoxia-induced glucose-derived deoxynucleotide synthesis in cultured ECs. In neonatal mice, hyperoxia-induced abnormal EC proliferation, dysmorphic angiogenesis, and alveolar simplification were augmented by nanoparticle-mediated endothelial overexpression of phosphogluconate dehydrogenase, the second enzyme in the PPP. These effects were attenuated by inhibitors of the PPP. Neonatal hyperoxia augments the PPP, causing abnormal lung EC proliferation, dysmorphic vascular development, and alveolar simplification. These observations provide mechanisms and potential metabolic targets to prevent BPD-associated vascular dysgenesis.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Células Endoteliales/patología , Pulmón , Neovascularización Patológica/metabolismo , Oxígeno/efectos adversos , Vía de Pentosa Fosfato , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/complicaciones , Displasia Broncopulmonar/patología , Proliferación Celular , Glucólisis , Humanos , Hiperoxia , Recién Nacido , Pulmón/irrigación sanguínea , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Neovascularización Patológica/etiología , Oxígeno/administración & dosificación , Fosfogluconato Deshidrogenasa/metabolismo , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología
19.
FASEB J ; 35(2): e21343, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33508151

RESUMEN

Most physiological processes in mammals are subjected to daily oscillations that are governed by a circadian system. The circadian rhythm orchestrates metabolic pathways in a time-dependent manner and loss of circadian timekeeping has been associated with cellular and system-wide alterations in metabolism, redox homeostasis, and inflammation. Here, we investigated the expression of clock and clock-controlled genes in multiple tissues (suprachiasmatic nucleus, spinal cord, gastrocnemius muscle, and liver) from mutant hSOD1-linked amyotrophic lateral sclerosis (ALS) mouse models. We identified tissue-specific changes in the relative expression, as well as altered daily expression patterns, of clock genes, sirtuins (Sirt1, Sirt3, and Sirt6), metabolic enzymes (Pfkfb3, Cpt1, and Nampt), and redox regulators (Nrf2, G6pd, and Pgd). In addition, astrocytes transdifferentiated from induced pluripotent stem cells from SOD1-linked and FUS RNA binding protein-linked ALS patients also displayed altered expression of clock genes. Overall, our results raise the possibility of disrupted cross-talk between the suprachiasmatic nucleus and peripheral tissues in hSOD1G93A mice, preventing proper peripheral clock regulation and synchronization. Since these changes were observed in symptomatic mice, it remains unclear whether this dysregulation directly drives or it is a consequence of the degenerative process. However, because metabolism and redox homeostasis are intimately entangled with circadian rhythms, our data suggest that altered expression of clock genes may contribute to metabolic and redox impairment in ALS. Since circadian dyssynchrony can be rescued, these results provide the groundwork for potential disease-modifying interventions.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas CLOCK/metabolismo , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/metabolismo , Proteínas CLOCK/genética , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
20.
FEBS J ; 288(4): 1286-1304, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32621793

RESUMEN

The enzyme 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phosphogluconate to ribulose-5-phosphate. It represents an important reaction in the oxidative pentose phosphate pathway, producing a ribose precursor essential for nucleotide and nucleic acid synthesis. We succeeded, for the first time, to determine the three-dimensional structure of this enzyme from an acetic acid bacterium, Gluconacetobacter diazotrophicus (Gd6PGD). Active Gd6PGD, a homodimer (70 kDa), was present in both the soluble and the membrane fractions of the nitrogen-fixing microorganism. The Gd6PGD belongs to the newly described subfamily of short-chain (333 AA) 6PGDs, compared to the long-chain subfamily (480 AA; e.g., Ovis aries, Homo sapiens). The shorter amino acid sequence in Gd6PGD induces the exposition of hydrophobic residues in the C-terminal domain. This distinct structural feature is key for the protein to associate with the membrane. Furthermore, in terms of function, the short-chain 6PGD seems to prefer NAD+ over NADP+ , delivering NADH to the membrane-bound NADH dehydrogenase of the microorganisms required by the terminal oxidases to reduce dioxygen to water for energy conservation. ENZYME: ECnonbreakingspace1.1.1.343. DATABASE: Structural data are available in PDB database under the accession number 6VPB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Gluconacetobacter/enzimología , Gluconatos/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Ribulosafosfatos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Gluconacetobacter/genética , Gluconatos/química , Humanos , Modelos Químicos , Modelos Moleculares , Estructura Molecular , NAD/metabolismo , NADP/metabolismo , Fosfogluconato Deshidrogenasa/clasificación , Fosfogluconato Deshidrogenasa/genética , Filogenia , Dominios Proteicos , Multimerización de Proteína , Ribulosafosfatos/química , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...